Weak orientability of matroids and polynomial equations
نویسندگان
چکیده
منابع مشابه
Weak orientability of matroids and polynomial equations
This paper studies systems of polynomial equations that provide information about orientability of matroids. First, we study systems of linear equations over F2, originally alluded to by Bland and Jensen in their seminal paper on weak orientability. The Bland-Jensen linear equations for a matroid M have a solution if and only if M is weakly orientable. We use the Bland-Jensen system to determin...
متن کاملTesting Orientability for Matroids is NP-complete
Matroids and oriented matroids are fundamental objects in combinatorial geometry. While matroids model the behavior of vector configurations over general fields, oriented matroids model the behavior of vector configurations over ordered fields. For every oriented matroid there is a corresponding underlying oriented matroid. This paper addresses the question how difficult it is to algorithmicall...
متن کاملWeak Tutte Functions of Matroids
We find the universal module w(M) for functions (that need not be invariants) of finite matroids, defined on a minor-closed class M and with values in any module L over any commutative and unitary ring, that satisfy a parametrized deletion-contraction identity, F (M) = δeF (M r e) + γeF (M/e), when e is neither a loop nor a coloop. (F is called a (parametrized) weak Tutte function.) Within the ...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولCoupled systems of equations with entire and polynomial functions
We consider the coupled system$F(x,y)=G(x,y)=0$,where$$F(x, y)=bs 0 {m_1} A_k(y)x^{m_1-k}mbox{ and } G(x, y)=bs 0 {m_2} B_k(y)x^{m_2-k}$$with entire functions $A_k(y), B_k(y)$.We derive a priory estimates for the sums of the rootsof the considered system andfor the counting function of roots.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2015
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2015.03.018